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Abstract

In order to estimate the RF radiation hazards to
astronauts and electronics equipment due to
various Space Station transmitters, the electdc
fields around the various Space Station antennas
are computed using the rigorous Computational
Electromagnetics (CEM) techniques. The Method
of Moments (MoM) was applied to the UHF and S-
band low gain antennas. The Aperture Integration
(AI) method and the Geometrical Theory of
Diffraction (GTD) method were used to compute
the electric field intensities for the S- and Ku-band
high gain antennas. As a result of this study, The
regions in which the electric fields exceed the
specified exposure levels for the Extravehicular
Mobility Unit (EMU) electronics equipment and
Extravehicular Activity (EVA) astronaut are
identified for various Space Station transmitters.

I. Introduction

Predicting the near-field intensities (strengths)
around an antenna and structures is important in
assessing personnel and electronic equipment
Radio Frequency (RF) exposure hazards. 1Gdffin
experimentally studied the electromagnetic fields
in the Space Shuttle payload bay due to the Ku-
band antenna. 2'3Murphy analyzed and presented
the obtained Space Shuttle flight experiment data
for the electromagnetic fields produced by the
Space Shuttle S- and Ku-band antennas. No
prediction techniques based on the rigorous

Computational Electromagnetics (CEM)
techniques were presented in their studies.

There are concerns about the levels of electric
field strength produced by the Space Station
communication and tracking systems transmitters.
Users of the Space Station designing scientific
experiment payloads need to know the levels of
electromagnetic fields in the Space Station
environment. Astronauts are required to assemble
and maintain the Space Station. To ensure the
astronaut safety and mission success, the
electromagnetic fields produced by the Space
Station various transmitters need to be quantified.
This study is to quantify and analyze the near-field
strengths and power densities around the Space
Station various UHF, S-, and Ku-band antennas,
as shown in Fig.l, based on the rigorous
computational electromagnetic methods.

In recent years, due to the advance of computer
and computational electromagnetics, rigorous
prediction methods have been developed which
can be used in the early design stage to
complement the costly experiment process. A
reliable computational tool provides for the early
detection of problems and helps to find the
solutions. Predicting the electric field strengths
close to an antenna is not trivial. Within the near
field, far-field approximations are no longer valid,
and hence more rigorous numerical techniques
and more complex antenna models have to be
applied. In this study, the Method of Moments
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(MoM), the Aperture Integration (AI) method, and

the Geometrical Theory of Diffraction (GTD)

method were used to compute the electric field
intensities.

The regions in which the electric fields exceed the

specified maximum permitted RF exposure to the

Extravehicular Mobility Unit (EMU) electronic

equipment and Extravehicular Activity (EVA)
astronaut are identified for the Space Station

various UHF, S-, and Ku-band antennas. Contour

curves of equal electdc field strength are

presented at selected field strength levels.

II. Low Gain Antenna Analysis

A technique to predict the near field strengths has
been developed by Wilton and Hwu 47. The

electric field integral equation (EFIE) is formulated

in the frequency domain using the vector and

scalar potential description for an arbitrarily

shaped, perfectly conducting structure consisting
of surfaces and wires. The surfaces are modeled

by planar triangular patches, and thin wires are

modeled by piecewise linear segments. The

integral equations are formulated via the

equivalence principle, and the method of

moments is applied to solve for the currents

induced on the boundary surfaces of the system.
The current distribution on the structure can be

obtained for each specified excitation by solving

the resulting matrix equation. From these
currents, the near field can be obtained.

Let S denote a configuration of an antenna

immersed in an incident electromagnetic field. In

general, S may consist of a collection of

conducting bodies SB and wires Sw. An electric
field E_, defined to be the field due to an

impressed source in the absence of S, is incident
on and induces surface current J and total current

I on SB and Sw respectively. A pair of coupled

integral equations for the configuration of wires
and bodies may be derived by requiring the

tangential component of the electric field to vanish
on each surface. Thus we have

w),.. (1)

where

A= l, ] #s,+fs z #s' (2)
, w 2_a(s') R

1 dl e -JkR
dS' J2_m(s' ) ds' R

(3)

and R=[r-r'[ is the distance between an arbitrarily

located observation point r and a source point r'

on S. In (2) and (3), the wavenumber k=-2_/X,

where X is the wavelength, s and g are the

permittivity and permeability, respectively, of the

surrounding medium, s' is the arc length along the
wire axis, and a is the radius of the wire.

The current is written as a linear combination of

subdomain basis functions with unknown

expansion coefficients. These unknown

coefficients are obtained by applying the method

of moments for solving the integral equation,

The vector and scalar potentials A and _ can be

calculated at any point in space according to the

formulas (2) and (3). Finite differences were used

to approximate the gradient and curl operations,
and hence to determine the near electric and

magnetic fields at a given point. Detailed
procedures may be found in Wilton and Hwu .7.

II.a. UHF Low Gain Antenna

The Space Station UHF antenna transmit

frequency is 413.5 MHz. The electric field

strength levels that an EVA astronaut or sensitive

electronic equipment might experience from UHF

antenna system operation are required to comply

with specified RF radiation protection criterion.

A radiated power of 5 watts is used for the UHF

quadrifilar helix antenna for the high power
communication link between the Space Station

and Shuttle Orbiter. The maximum permitted RF

exposure to the EMU at the UHF frequencies is

3.16 Vim peak, as shown in Fig. 2. The maximum

permitted RF exposure to the EVA astronauts at

the UHF frequencies is shown in Fig. 3. The
regions in which the electric fields are greater than

the maximum permitted RF exposure to the EMU

at the UHF frequencies are identified in Fig. 4.

For 5 watts radiated power, a cylindrical region of

14 meter diameter and 10 meters in length,
extending 9 meters forward and 1 meter backward



from the antenna and centered about the

boresight axis, should be avoided to reduce the
risk associated with excessive UHF antenna RF

exposure to the EMU electronic equipment.

As shown in Fig. 3, the maximum permitted RF

exposure to the EVA astronaut is an avera_le
power density of 1.378 mW/cm 2 (13.78 W/m'),

which is an electric field intensity of 102 Vim peak
(or 72 Vim rms) at the UHF frequency of 413.5

MHz. For 5 watts radiated power, the electdc field

intensity criterion will not be exceeded by the UHF
antenna if the EVA astronaut stays further than
0.5 meter from the antenna.

ll.b. S-Band Low Gain Antenna

The Space Station S-band omni antenna transmit

frequency is 2.265 GHz. The electric field
strength levels that an astronaut or sensitiv_

electronic equipment might experience due to S-

band antenna system operation are required to
comply with specified RF radiation protection
criterion.

Forty watts of maximum radiated power is used in

this analysis for the S-band quadrifilar helix

antenna. The maximum permitted RF exposure to

the EMU at the S-band frequencies is 106 Vim

peak as shown in Fig. 1. The regions in which the
electric fields are greater than the maximum

permitted RF exposure to the EMU at the S-band

frequencies are identified in Fig. 5. Based on the

results obtained for the 40 watts radiated power, a
cylindrical region of 1.1 meter diameter and 0.8

meter in length, extending outward from the

antenna and centered about the boresight axis,

should be avoided to protect the EMU electronics.

As shown in Fig. 2, the maximum permitted RF

exposure to the EVA astronaut at the S-band

frequencies is an average power density of 5
mW/cm 2 (50 W/m2), which is an electric field

intensity of 194 Vim peak (or 137 Vim rms).
Based on the results obtained for 40 watts

maximum radiated power, as shown in Fig. 5, the
electric field intensity criterion for the EVA

astronaut will not be exceeded by the S-band

antenna provided the EVA astronaut stays further
than 0.5 meter from the S-band omni antenna.

III. Hi,qh Gain Antenna Analysis

Traditionally, the AI method has been widely used

for calculating aperture antenna patterns in the
forward region, which includes the main beam and

the near-in sidelobes. The physical optics

approximation is used. The approximation fails in

the shadow region of the aperture antenna
because the currents on the shadow side of the

antenna are neglected. For the calculation of

these wide-angle sidelobes, the GTD has been

found very efficient and accurate. The

combination of AI and GTD methods was applied

in this study for the numerical analysis of the high
gain horn and reflector antennas.

The AI technique has been widely used for

calculating aperture antenna patterns in the
forward region. The approximations used in this

technique are: The current density is zero on the

shadow side of the antenna. The discontinuity of
the current density over the rim of the antenna is
neglected.

The radiation field of an aperture antenna can be

computed by integrating the field distribution on

the aperture. For an aperture antenna with

aperture defined in the X-Y plane and pointed

along the Z-axis, the radiation field (E) can be
computed by

E =Jkjj[Fxe x +F e _ e-j*R dxdy,
21r _ Y Yl R

(4)

where ex and eyare the x- and y-components of the

aperture field. Fx and F, are the modified vector
element patterns associated with two Huygen's

sources. R is the distance between a field point

and a source point. The wavenumber k = 2mr.,t,

where _. is the wavelength.

In the numerical integration, the aperture is

treated as a collection of overlapping

subapertures. Each subaperture is square in

shape and consists of four adjacent grid squares.

The field distribution for each subaperture is

triangular which permits a piecewise linear
approximation to the overall aperture field

distribution. Detailed descriptions of the method
can be found in Rudduck e.

GTD gives valid results in the shadow region of
horn and reflector antennas since the currents on

either side of the edge are accounted for

implicitly. This method is finding increasing



applicationto hornandreflectorantennasfor the
antennapatternsin far-outsidelobeandbacklobe
regions.

At high frequencies the scattering fields depend

on the electrical and geometrical properties of the

scatterer in the immediate neighborhood of the

point of reflection and diffraction. Thus, the total
fields (E °f) can be obtained by summing up the

individual contributions of the direct field (L_"),

reflected field (E'f), and diffracted field (E_f), as

follows:

g .

E'°' =E + + z EE. (5)
n=l m=l

The diffracted fields are related to the incident

fields by means of diffraction coefficients. In a

similar way, the reflected fields are obtained using
reflection coefficients. Since the diffracted field is

determined solely by the incident field and the

local nature of the scattering surface, it is possible

to derive a diffraction function relating the incident
field to the diffracted field for a certain scatter

geometry, a so called canonical configuration.
Detailed descriptions of the method can be found
in Rudduck 8 and Kouyoumjian 9.

lll.a. S-Band Steerable Hi,qh Gain Antenna

The S-band subsystem, also known as the

Assembly/Contingency Subsystem (ACS), is a bi-
directional RF link utilizing the Tracking and Data

Relay Satellite System (TDRSS) S-band Single

Access (SSA) service to receive audio, software

uploads, and commands from the ground station,
and to transmit audio and core element telemetry

to the ground station. In addition, the S-band

subsystem is utilized to support ground based

tracking services for station orbit determination.

The transmit frequency for the S-band antenna is
2.265 GHz. The near-field intensity levels around

the Space Station produced by the S-band high

gain antenna are a real concern because of the

high radiated power.

A maximum of 40 watts (16 dBW) and a minimum

of 21.4 watts (13.3 dBW) radiated power (Pr) at

the antenna aperture were estimated for the S-
band high gain steerable horn antenna. These
estimates are based on the maximum estimated

Effective Isotropic Radiated Power EIRP (29

dBW), the minimum specified EIRP (26.3 dBW)

and the specified minimum antenna gain (13

dBic):

Pr_.rnax(16dBW)+G(13dBic)=EIRP_BaX(29dBW)
Pr._m,n(13.3dBW)+G(13dBic)=EIRP._m_n(26.3dBVV)

In the aperture integration, a TEll mode aperture
field distribution is assumed for the S-band conical

horn antenna. The square grid size was set to be
0.01 X2. The results correlate well with that using

0.0025 ;_2square grid size. To further validate the

S-band antenna model used in the computer

simulation, experimental measurements were

performed in the antenna test range. Good
agreement is obtained for the computed and

measured antenna radiation patterns. Detailed
descriptions and data can be found in Hwu 1°.

The maximum permitted RF exposure to the EMU

is 106 Vim peak at the S-band frequencies. The

regions in which the electric fields are greater than

the maximum permitted RF exposure to the EMU

at the S-band frequencies are identified in Fig. 6.
Based on the results obtained for the maximum

radiated power (40 watts or 16 dBW), a cylindrical

region of 1 meter diameter and 2.3 meters in
length, extending outward from the antenna and

centered about the boresight axis, should be
avoided to reduce the risk associated with

excessive S-band antenna RF exposure to the

EMU electronic equipment. The maximum

permitted RF exposure to the EVA astronaut is an
average power density of 5 mW/cm 2 (50 W/m 2) or

an electdc field intensity of 194 Vim peak (or 137

Vim rms) at the S-band frequencies. Based on the

results obtained for a maximum radiated power

(40 watts), the electric field intensity criterion will
not be exceeded by the S-band antenna if the

EVA astronaut stays outside of a cylindrical region

of 0.5 meter diameter and 1.3 meters in length,

extending outward from the antenna and centered

about the boresight axis.

III.b. Ku-Band Steerable Hi,qh Gain Antenna

The Ku-band subsystem is a single direction RF

link utilizing the TDRSS Ku-band Single Access

(KSA) service to transmit payload data and video

to the ground station. The transmit frequency for
the Ku-band antenna is 15 GHz. The near-field

intensity levels around the Space Station

produced by the 6-ft. reflector antenna are a
matter for concern.



A maximum of 10 watts (10 dBW) and a minimum
of 4 watts (6 dBW) radiated power (Pr) at the
antenna aperture were estimated for the Ku-band
reflector antenna. These estimates are based on
the maximum allowable EIRP (56 dBW), the
minimum allowable EIRP (52dBW), and the
specified minimum antenna gain (46 dBic):

Pr._rnax(10dBW)+G(46dBic) = EIRP._max(56dBW)
Pr._min(6dBVV)+G(46dBic) = EIRP_.min(52dBVV)

In the aperture integration process, the square grid
size was set to be 1 X2. The results agree well with
that using 0.25 X2 square grid size. In the
numerical integration, the aperture field is
approximated by a collection of overlapping
subapertures with triangular field distribution. As a
consequence of this piecewise linear
approximation of the aperture field, the grid size
can be increased to reduce the field sample
number without losing accuracy. The simulations
were carried out on a Cray X-MP/EA 464
supercomputer. To further validate the Ku-band
antenna model used in the computer simulation,
experimental measurements were performed on
the antenna test range. Good agreement was
obtained for the computed and measured antenna
radiation patterns. Detailed descriptions and data
can be found in Hwu11.

The maximum permitted RF exposure to the EMU
is 20 Vim peak (or 14.14 Vim rms) at the Ku-band
frequencies. The regions in which the electric
fields are greater than the maximum permitted RF
exposure to the EMU at the Ku-band frequencies
are identified in Fig. 7. Based on the results
obtained for a maximum of 10 watts radiated
power, a cylindrical region of 2.5 meters diameter
and 230 meters in length, extending outward from
the antenna and centered about the boresight
axis, should be avoided to protect the EMU
electronic equipment and reduce the risk
associated with the Ku-band antenna RF

exposu re.

The RF radiation protection criterion specified for
the EVA astronaut is an average power density of
5 mW/cm 2 (50 W/m 2) or an electric field intensity
of 194 Vim peak (or 137 Vim rms) at the Ku-band
frequencies, same as for the S-band frequencies.
Based on the results obtained for a maximum of
10 watts radiated power, the 194 Vim peak (or 137
Vim rms) electric field intensity criterion will not be
exceeded by the Ku-band antenna so long as the

EVA astronaut stays outside of a cylindrical region
of 2.5 meters diameter and 5 meters in length,
extending outward from the antenna and centered
about the boresight axis.

IV. Concluding Remarks

In this paper, the electric field strengths due to the
Space Station UHF, S-band and Ku-band
transmitters was presented. The rigorous method
of moments, aperture integration method and the
geometrical theory of diffraction method were
applied in this study. These computational
techniques can be used in the early design stage,
when the hardware is not yet available, to identify
and solve problems earlier. They can also
complement the costly experiment process in the
system performance evaluation. As a result of
this study, the regions in which the electric fields
exceed the specified maximum permitted RF
exposure to the EMU electronic equipment and
astronaut are determined. This information is
important in assessing personnel and electronic
equipment RF exposure hazards and is useful for
the users of the Space Station designing scientific
experiment payloads to be operated in the Space
Station environment.
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